LADISLAV HEJDÁNEK ARCHIVES | Cardfile

Here you will find a digitized image of Hejdánek's original filing cabinet. Its total volume is many thousand tickets. We publish them in parts as we handle them. At the moment we have worked out what prof. Hejdánek himself developed electronically. However, much work remains on paper cards. In addition to Hejdánek's extracts from reading, the filing cabinet also includes his own thought work from recent years, which cannot be found elsewhere.


Matematika a čísla vůbec

Ladislav Hejdánek (2014)
Matematika má už dávno takovou pověst, že je nejpřesnější a nejpřísnější vědeckou disciplínou, a její postupy že jsou naprosto přesné a průhledné. Bedlivější sledování vskutku všech jejích postupů však ukáže, že předpokladem (a dokonce nutným a nezastupitelným předpokladem) – a tedy mezí, hranicí – její přesnosti a přísnosti jsou některé nelogičnosti a dokonce protilogičnosti, které si jako jakousi „oběť“ božstvu přesnosti vynucuje její údajná „dokonalost“. Historicky již od počátku úzce souvisela číselná matematika nejen s čísly, ale také s matematikou plošných útvarů, především trojúhelníků, takže příklady lze vzít z obou zmíněných disciplín (hlavní problémy jsou vlastně společné). V geometrii jsou údajně s naprostou přesností „míněny“ čili pojmově „konstruovány“ takové údajné „skutečnosti“, jako jsou body, úsečky, ploché obrazce, stereoútvary a jejich geometrické vlastnosti atd. Vždycky tam shledáváme, že ani velký počet bodů nemůže vytvořit ani nejkratší úsečku, ani největší počet úseček nevytvoří ani nejmenší plochu, a tak bychom mohli pokračovat dále. A nejde jen o to, že takové vytvoření či vytváření by nutně znamenalo pohyb a časovost, což v geometrii (ani ve světě čísel) přece neexistuje. I když od ztráty „času“ či spíše abstrahování od času zcela odhlédneme, zůstáváme v rozpacích, jak se to má jednak s nulou, jednak s nekonečnem, a v „prostoru“ tedy jak se to má s bodem o nulových rozměrech ve vztahu k úsečce, nebo jak se to má ve vztahu s úsečkou ve vztahu k ploše. Naučili jsme se s tím pracovat, prostě od některých postupů si držíme odstup a dáváme je zcela stranou (třeba nulou nedělíme, abychom nemuseli volit mezi rozmanitými nekonečny apod.) To však je nemožné a nemyslitelné, když aplikujeme matematiku na skutečnost, na skutečný svět, kde nikdy nemůžeme dělit do nekonečna, ale vždycky musíme jakékoli dělení někde zastavit. Tam si musíme počínat s kvantifikováním opatrně, a to právě s vědomím, že to, co platí v matematice (a se všemi jejími zvyky), nemusí platit a neplatí v „realitě“. A musíme také vzít na vědomí, že některé události a děje nemohou být po všech stránkách kvantifikovány, což nám vždy znovu připomíná, že svět čísel a matematiky (a geometrie atd. – a vůbec svět pojmových konstruktů – to by vyžadovala zvláštní ohled a rozbor) není totožný se světem skutečným a že nepředstavuje jediný možný způsob, jak informace o skutečném světě můžeme (a budeme) organizovat.
(Písek, 140831-1.)
date of origin: srpen 2014