Archiv Ladislava Hejdánka | Kartotéka

Zde najdete digitalizovanou podobu Hejdánkovy originální kartotéky. Její celkový objem čítá mnoho tisíc lístků. Zveřejňujeme je po částech, jak je zvládáme zpracovávat. V tuto chvíli máme zpracované to, co prof. Hejdánek sám vypracoval elektronicky. Zbývá ovšem mnoho práce na papírových kartičkách. Kromě Hejdánkových výpisků z četby obsahuje kartotéka také jeho vlastní myšlenkovou práci z posledních let, kterou nejde dohledat jinde.


<<  <   1 / 2   >    >>
záznamů: 7

Předmětnost | Nepředmětnost | Řeč (x jazyk) | Logos

Hans-Georg Gadamer (1978)
Na tomto základě obraťme nyní pozornost k tomu poslednímu, co právě v diskusi soudobé filosofie vystoupilo úplně do popředí a co se dá pojmy předmětnosti a zpředmětnění také uchopit jen s velikým násilím – totiž k fenoménu řeči. Zdá se mi, že řeč je jedním z nejpřesvědčivějších fenoménů nepředmětnosti, neboť dějový charakter mluvení charakterizuje právě bytostně sebezapomnění. Je v tom vždy už kus technického znetvoření, když moderní tematizace řeči v ní vidí jen instrumentárium, znakový systém, arzenál komunikačních prostředků, jako kdybychom tyto nástroje či prostředky mluvení, slova a vazby měli jakoby v zásobě a pouze je aplikovali na to, s čím se setkáváme. Tady má řecký protějšek odzbrojující evidenci. Pro řeč neměli Řekové vůbec žádné slovo. Měli jen slovo pro jazyk, který vyvolává zvuky – glótta – a slovo pro to, co jazyk sděluje: logos. Logos staví před oči přesně to, k čemu je vnitřní sebezapomenutost řeči bytostně vztažena, totiž ten mluvením evokovaný, do přítomnosti vyzvednutý, díky mluvení disponovatelný a komunikativně sdělitelný svět sám. V mluvení o věcech jsou věci zde, v mluvení a v mluvení spolu se buduje svět a lidská zkušenost světa – a ne v nějakém zpředmětňování, jež se oproti komunikativnímu zprostředkování názorů jednoho s názory druhého dovolává objektivity a chce být věděním pro každého. Artikulace zkušenosti světa v logu, mluvení spolu, komunikativní sedimentace naší zkušenosti světa, zahrnující všechno, co si navzájem můžeme vyměňovat, tvoří jistou formu vědění, jež vedle velkého monologu moderní vědy a rostoucího potenciálu jí nasbíraných zkušeností stále ještě představuje tu druhou polovinu pravdy. Téma konfrontace moderní ideje vědy s myšlenkou řecké filosofie je tak trvale ak/114/tuální. Neboť se tu jedná o zapracování velkolepých výsledků a mocných výkonů moderní zkušenostní vědy i jejího zvládání světa do společenského vědomí, do životní zkušenosti jedince i skupiny.Toto zapracování se však nakonec nemůže zase uskutečňovat metodami moderní vědy a její cestou neustálé sebekontroly; odehrává se v praxi společenského života samého, jež musí vždy znovu do své praktické odpovědnosti zahrnovat všechno, co se dostalo do moci člověka, a hájit ta omezení, která lidský rozum staví vlastní moci a smělosti. Není třeba dokazovat, že i dnešnímu člověku zůstává srozumitelný svět, kde jsme zdomácněli a kde se cítíme doma, tou poslední instancí, vůči níž si odcizený svět moderního průmyslu a techniky může činit nárok jen na služebnou a podružnou funkci.
(Řecká filosofie a moderní myšlení, in: 7910, Člověk a řeč, Výbor textů, přel. Jan Sokol, Praha 1999, str. 113-14.)
vznik lístku: únor 2001

Konstanty (fyzikální)

Ladislav Hejdánek (2005)
Ve fyzice (i v současné) se mluví o tzv. konstantách. Většina fyziků ovšem s těmito „konstantami“ počítá jako s čímsi „reálným“. Takovou klasickou fyzikální „konstantou“ je gravitace, označovaná G. Nejde ovšem o žádnou „reálnou“ velikost přitažlivosti na určité těleso na určitém místě a v určité době, ale skutečně o jakýsi matematický vztah, nicméně nikoli náhodný resp. libovolně stanovený, nýbrž o vztah, který je nezávislý na přístupech kteréhokoli člověka, např. fyzika. Přesně řečeno je tomu takto: síla přitažlivosti mezi dvěma tělesy je přímo úměrná jejich hmotnostem a nepřímo úměrná druhé mocnině jejich vzájemné vzdálenosti, a tato dvojí úměrnost platí naprosto stejně všude ve vesmíru, tedy konstantně. Nezáleží tedy vůbec na tom, jakých jednotek pro měření gravitace použijeme. Jinou takovou „konstantou“ je rychlost světla ve vakuu, označovaná c. (Jsou ve fyzice ještě další dvě konstanty, tzv. Planckova a Boltzmannova.) Problém je v tom, v jakém smyslu je můžeme chápat jako „reálné“ (případně „skutečné“); eventuelně jak musíme změnit své pojetí „reálnosti“, abychom tyto fyzikální konstanty mohli považovat právě za „reálné“. Už přece fyzikům musí být jasné, že je rozdíl mezi reálností tzv. reálných částic nebo kvant (na rozdíl od virtuálních) na jedné straně a mezi „reálností“ pouhých matematických vztahů. To nás ovšem nutně vede hned o krok dál: musíme se tázat, jaký je rozdíl mezi těmto fyzikálními „konstantami“ a vysloveně pouze matematickými vztahy např. mezi plochou a poloměrem kružnice, nebo mezi obsahem a poloměrem koule, kde musíme počítat s číslem π: π je totiž také jakási konstanta, která jednak platí pouze ve světě čisté geometrie, kde ji čistě matematickými postupy můžeme vypočítat na obrovské množství desetinných míst, ale kterou můžeme velmi užitečně aplikovat také při reálných měřeních třeba na povrchu zemském (v opačném postupu, totiž od měření k výpočtům, se ovšem můžeme dostat jen k hodnotám přibližným, a to znamená na mnohem menší počet desetinných míst). Přitom ovšem víme, že zmíněné matematické výpočty platí pouze pro euklidovskou geometrii, takže třeba už ve vesmírných rozměrech se ukáže nutnost četných korektur. Ve vesmírných rozměrech tedy euklidovská geometrie neplatí, a neplatí tedy ani některé její matematické „kostanty“. Není tomu obdobně také s tzv. konstantami fyzikálními? Pokud jsme schopni je co nejpřesněji vyjádřit matematicky, je to vlastně záležitost jen matematická, zatímco jejich „reálné“ platnosti se můžeme jen domýšlet (s tím, že pro budoucnost připustíme možnost dalších korektur). „Víra“ v „reálnou“ neměnnost a univerzální platnost tzv. fyzikálních konstant má v sobě cosi mystického a je v rozporu s vědeckými zásadami vždy znovu nezbytného ověřování všech hypotéz i teorií v nových situacích, do nichž nás staví pokroky poznávání. (Písek, 051029-1.)
vznik lístku: říjen 2005

Konstanty

Ladislav Hejdánek (2008)
Mám za to, že všechny konstanty, o kterých mluví a o které se opírají fyzici, mají stejnou platnost jako konstanty matematické, tj. že jsou „vnitřními“ konstantami určitého myšlenkového systému, nikoli konstantami reálného světa. To neznamená, že vůbec neplatí, že jsou nicotné nebo nahodilé či svévolně určené. Tak třeba konstanta π, jak ji známe z geometrie, je nepochybně platná, a to nejenom v rámci geometrie (pochopitelně euklidovské), ale všude tam, kde prostorové poměry můžeme měřit a geometrické poučky můžeme aplikovat. Totéž platí pro goniometrické funkce atd., ale vždy za určitých předpokladů a tedy relativně, tj. ve vztahu k těmto předpokladům. Prakticky to znamená, že jde vždy jen o jisté přiblížení, o přibližné postižení skutečných poměrů, které nám stačí, ale ve chvíli, kdy je aplikujeme na příliš rozsáhlou škálu (nebo naopak na nějakou mikro-škálu), může aplikace selhávat. Pokud se přesto nějaká taková kvantifikace, pracující s „konstantami“, nevhodně aplikuje, může to vést k závěrům naprosto neopodstatněným a mylným.
(Písek, 080928-1.)
vznik lístku: září 2008

Konstanty (fyzikální)

John D. Barrow (2002)
(podle Plancka, 1899)
V souladu se svým pohledem navrhl Planck v roce 1899 sestavit přirozené jednotky hmotnosti, délky a času ze základních přírodních konstant, za které pokládal gravitační konstantu G, rychlost světla c a konstantu akce h, která dnes nese jeho jméno. Planckova konstanta určuje nejmenší množství, ve kterém se energie může vyměňovat („kvantum“). K tomu ještě přidal Boltzmannovu konstantu k, která převádí energii do jednotek teploty v kelvinech (K), což dovoluje definmovat i přirozenou jednotku teploty. Planckovy jednotky jsou jediné kombinace těchto konstant, které mají rozměr hmotnosti, délky, času a teploty. Jejich velikosti se příliš neliší od Stoneyho:
mpl = (hc/G)½ = 5,56-5 gramu
lpl = (Gh/c3)½ = 4,13.10-33 centimetru
tpl = (Gh/c5)½ = 1,38.10-43 sekundy
Tpl = k-1 (hc5/G)½ = 3,5.1032 kelvinu.
Opět vidíme rozdíl mezi …
(Konstanty přírody, Praha 2005, str. 35.)
vznik lístku: říjen 2005

Konstanty a Vesmír

Ladislav Hejdánek (2015)
V jednom textu z internetu (o paradoxu dvojčat) jsem našel větu: „Jak všichni víme, tak ve světě, v kterém žijeme, není skoro nic konstantní. Naopak, všechno je vůči všemu v pohybu, něco zrychluje, něco zpomaluje atd.“ Tak si kladu otázku: pokud by platilo, že „skoro“ (čili téměř) všechno se mění a že „skoro“ (čili téměř) nic není konstantní, znamená to, že přece jen něco konstantní opravdu je, tj. že je něco, co se naprosto nijak nemění. – Je ovšem skutečností, že se za skutečné považují třeba (poměrně četné ) fyzikální konstanty (příklady: Planckova konstanta, gravitační konstanta, Avogadrova konstanta atd.; nepočítáme ovšem konstanty číselné nebo geometrické etc.). Otázkou však je, do jaké míry jde vskutku o skutečnost anebo jenom o pouhé statistické standardy. Sám mám za to, že skutečná (tj. naprostá) neměnnost je prakticky nedoložitelná, protože nikdy nejsme schopni se vyhnout chybám v měření. Zdánlivé „neměnnosti“ či konstanty jsou vždy záležitostí matematizace (statistického zpracování) mnoha měření a tudíž záležitostí matematické teorie. Jinou věcí je typizace určitých procesů nebo vztahů (reálných), u nichž ovšem je stejně nadále nutno počítat s jistou omezenou variabilitou (pravidelností), ale nikoli s naprostou totožností (invariabilitou, invariancí) jednotlivých případů.
(Písek, 150227-2.)
vznik lístku: únor 2015